Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.975
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629564

RESUMO

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cobre , Alface , Poluentes Ambientais/análise , Solo , Catalase , Nitratos/análise , Antibacterianos , Tetraciclina/análise , Carvão Vegetal , Poluentes do Solo/análise , Clorofila/análise , Malondialdeído , Nitrogênio/análise , Prolina
2.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605320

RESUMO

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Assuntos
Fertilizantes , Zea mays , Nitrogênio/análise , Dióxido de Carbono , Agricultura , Solo
3.
Environ Sci Technol ; 58(15): 6605-6615, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38566483

RESUMO

Microbial nitrogen metabolism is a complicated and key process in mediating environmental pollution and greenhouse gas emissions in rivers. However, the interactive drivers of microbial nitrogen metabolism in rivers have not been identified. Here, we analyze the microbial nitrogen metabolism patterns in 105 rivers in China driven by 26 environmental and socioeconomic factors using an interpretable causal machine learning (ICML) framework. ICML better recognizes the complex relationships between factors and microbial nitrogen metabolism than traditional linear regression models. Furthermore, tipping points and concentration windows were proposed to precisely regulate microbial nitrogen metabolism. For example, concentrations of dissolved organic carbon (DOC) below tipping points of 6.2 and 4.2 mg/L easily reduce bacterial denitrification and nitrification, respectively. The concentration windows for NO3--N (15.9-18.0 mg/L) and DOC (9.1-10.8 mg/L) enabled the highest abundance of denitrifying bacteria on a national scale. The integration of ICML models and field data clarifies the important drivers of microbial nitrogen metabolism, supporting the precise regulation of nitrogen pollution and river ecological management.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/análise , Rios , Nitrificação , China , Bactérias
4.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38575019

RESUMO

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Assuntos
Fertilizantes , Magnésio , Estruvita/química , Magnésio/química , Fertilizantes/análise , Óxido de Magnésio , Fósforo/química , Carvão Vegetal/química , Solo/química , Nitrogênio/análise
5.
Water Sci Technol ; 89(7): 1725-1740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619899

RESUMO

The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.


Assuntos
Amônia , Nitrogênio , Nitrogênio/análise , Desnitrificação , Estações do Ano , Reatores Biológicos/microbiologia , Águas Residuárias
6.
Glob Chang Biol ; 30(4): e17264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556774

RESUMO

Nutrient enrichment often alters the biomass and species composition of plant communities, but the extent to which these changes are reversible after the cessation of nutrient addition is not well-understood. Our 22-year experiment (15 years for nutrient addition and 7 years for recovery), conducted in an alpine meadow, showed that soil nitrogen concentration and pH recovered rapidly after cessation of nutrient addition. However, this was not accompanied by a full recovery of plant community composition. An incomplete recovery in plant diversity and a directional shift in species composition from grass dominance to forb dominance were observed 7 years after the nutrient addition ended. Strikingy, the historically dominant sedges with low germination rate and slow growth rate and nitrogen-fixing legumes with low germination rate were unable to re-establish after nutrient addition ceased. By contrast, rapid recovery of aboveground biomass was observed after nutrient cessation as the increase in forb biomass only partially compensated for the decline in grass biomass. These results indicate that anthropogenic nutrient input can have long-lasting effects on the structure, but not the soil chemistry and plant biomass, of grassland communities, and that the recovery of soil chemical properties and plant biomass does not necessarily guarantee the restoration of plant community structure. These findings have important implications for the management and recovery of grassland communities, many of which are experiencing alterations in resource input.


Assuntos
Pradaria , Plantas , Biomassa , Poaceae , Solo/química , Nitrogênio/análise , Nutrientes
7.
Water Sci Technol ; 89(6): 1466-1481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557712

RESUMO

Floating treatment wetlands (FTWs) have the potential to improve the quality of wastewater discharges, yet design basics are unavailable to size these systems. This study investigates the effect of FTWs' coverage ratio and hydraulic retention time on agri-food wastewater treatment. This was studied in a pilot-scale experiment comprising four lagoons (6.5 m3 each) fed with real effluent from an existing tertiary treatment lagoon. An evaluation of FTW of different sizes (L24, L48, and L72 representing 24, 48, and 72% of pilot lagoons surface areas) and a control, L0 (without FTW), was performed over 16 months. Overall, L72 and L48 moderately improved total nitrogen (TN) mass removal compared to L0 (p < 0.05), while L24 exhibited similar TN mass removal (p = 0.196). The highest improvement was observed for L72, exhibiting up to 55% (mean of 13%) greater N mass removal than the control. The net increase in TN removal by FTWs was mainly related to denitrification, promoted by decreasing dissolved oxygen for increasing FTW coverage ratio. Residence time, temperature, and dissolved oxygen were the main parameters driving TN removal by FTWs. Retrofitting existing lagoons with FTW can facilitate N retrieval through plant harvesting, thereby reducing N remobilization from sediment (common in conventional lagoons).


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Eliminação de Resíduos Líquidos , Desnitrificação , Nitrogênio/análise , Poluentes Químicos da Água/análise , Oxigênio
8.
PLoS One ; 19(4): e0300615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568985

RESUMO

The majority of Iranian fig production is exported, making it one of the world's most well-known healthy crops. Therefore, the main objective of the current experiment was to investigate the effects of various types of organic fertilizers, such as animal manure (cow and sheep), bird manure (partridge, turkey, quail, and chicken), and vermicompost, on the nutritional status of trees, vegetative and reproductive tree characteristics, fruit yield, and fruit quality traits in dried fig cultivar ("Sabz"). According to the findings, applying organic fertilizers, particularly turkey and quail, significantly improves vegetative and reproductive characteristics. However, other manures such as sheep, chicken, and vermicompost had a similar effect on the growth parameters of fig trees. Additionally, the findings indicated that except for potassium, use of all organic fertilizers had an impact on macro and microelements such as phosphorus, nitrogen, and sodium amount in fig tree leaves. Also, based on fruit color analysis in dried figs, the use of all organic fertilizers improved fruit color. Moreover, the analyses fruit biochemical showed that the use of some organic fertilizers improved that TSS and polyphenol compounds such as coumarin, vanillin, hesperidin gallic acid and trans frolic acid. In general, the results indicated that the addition of organic fertilizers, especially turkey manure, led to increased vegetative productivity and improvement in the fruit quality of the rain-fed fig orchard.


Assuntos
Ficus , Frutas , Ovinos , Animais , Solo/química , Ficus/química , Irã (Geográfico) , Fertilizantes/análise , Esterco/análise , Estado Nutricional , Nitrogênio/análise
9.
J Environ Manage ; 357: 120771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565035

RESUMO

Nitrogen fertiliser in agriculture continues to be one of the largest contributors to water pollution driven by the global food demand. Consequently, policies designed to tackle nitrogen pollution tend to be focused on the farm level. Applying mitigation measures requires knowledge, local labour and financial investment to achieve desired goals. Influencing farming activity comes with challenges as policies result in economic losses. We propose Water Quality Trading (WQT) to minimize the cost of controlling water pollution and develop it for policy recommendations in the River Alde catchment in Suffolk. We apply WQT to three scenarios named Reference Pollution Target, Livestock Target Plan and Variation of Farming. Our findings demonstrate that WQT can reduce farmers nitrogen load by 8%, 7% and 18% respectively from the baseline of 6 mg/L. The scenario simulations show a net revenue increase of 6%, 5% and 18% respectively. Our study demonstrates the effectiveness of the WQT approach in reducing water pollution, promoting sustainable agriculture and meeting water management goals.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Rios , Agricultura , Nitrogênio/análise , Reino Unido
10.
J Environ Manage ; 357: 120653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574704

RESUMO

In this research, we established an enhanced aerobic biological method utilizing a high-density bacterial flora for the treatment of low-biochemical plating parts washing wastewater. The elucidation of pollutant removal mechanisms was achieved through a comprehensive analysis of changes in sludge characteristics and bacterial community structure. The results demonstrated that throughout the operational period, the organic load remained stable within the range of 0.01-0.02 kgCOD/kgMLSS·d, the BOD5/COD ratio increased from 0.004 mg/L to 0.33 mg/L, and the average removal rates for key pollutants, including COD, NH4+-N, and TN, reached 98.13%, 99.86%, and 98.09%. MLSS concentration remained at 7627 mg/L, indicating a high-density flora. Notably, Proteobacteria, Bacteroidota, and Acidobacteriota, which have the ability to degrade large organic molecules, had been found in the system. This study affirms the efficacy of the intensive aerobic biological method for treating low-biochemical plating washing wastewater while ensuring system stability.


Assuntos
Poluentes Ambientais , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Nitrogênio/análise , Esgotos/química , Bactérias/metabolismo , Poluentes Ambientais/análise
11.
J Environ Manage ; 357: 120765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579467

RESUMO

Livestock grazing strongly influences the accumulation of soil organic carbon (SOC) in grasslands. However, whether the changes occurring in SOC content under different intensities of continuous summer long grazing are associated with the changes in microbially-derived necromass C remains unclear. Here, we established a sheep grazing experiment in northern China in 2004 with four different stocking rates. Soil samples were collected after 17 years of grazing and analyzed for physical, chemical, and microbial characteristics. Grazing decreased SOC and microbial necromass carbon (MNC). Notably, grazing also diminished contributions of MNC to SOC. MNC declined with decreasing plant carbon inputs with degradation of the soil environment. Direct reductions in microbial necromass C, which indirectly reduced SOC, resulted from reduced in plant C inputs and microbial abundance and diversity. Our study highlights the key role of stocking rate in governing microbial necromass C and SOC and the complex relationships these variables.


Assuntos
Pradaria , Solo , Animais , Ovinos , Solo/química , Carbono/análise , Estações do Ano , Nitrogênio/análise , Plantas , China , Microbiologia do Solo
12.
PeerJ ; 12: e17221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638157

RESUMO

Background: Soil organic nitrogen (SON) levels can respond effectively to crop metabolism and are directly related to soil productivity. However, simultaneous comparisons of SON dynamics using isotopic tracing in diverse agroecosystems are lacking, especially in karst areas with fragile ecology. Methods: To better understand the response of SON dynamics to environmental changes under the coupling of natural and anthropogenic disturbances, SON contents and their stable N isotope (δ15NSON) compositions were determined in abandoned cropland (AC, n = 16), grazing shrubland (GS, n = 11), and secondary forest land (SF, n = 20) from a typical karst area in southwest China. Results: The SON contents in the SF (mean: 0.09%) and AC (mean: 0.10%) profiles were obviously lower than those in the GS profile (mean: 0.31%). The δ15NSON values ranged from 4.35‰-7.59‰, 3.79‰-7.23‰, and 1.87‰-7.08‰ for the SF, AC, and GS profiles, respectively. Decomposition of organic matter controlled the SON variations in the secondary forest land by the covered vegetation, and that in the grazing shrubland by goat excreta. δ15NSON ranges were controlled by the covered vegetation, and the δ15NSON fractionations during SON transformation were influenced by microorganisms in all surface soil. Conclusions: The excreta of goats that contained 15N-enriched SON induced a heavier δ15NSON composition in the grazed shrubland. Long-term cultivation consumes SON, whereas moderate grazing increases SON content to reduce the risk of soil degradation. This study suggests that optimized crop-livestock production may benefit the sustainable development of agroecosystems in karst regions.


Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Solo/química , Florestas , Ecologia , China
13.
J Agric Food Chem ; 72(14): 7794-7806, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561246

RESUMO

To investigate the effects of fertilization methods and types on wheat rhizosphere microorganisms, macroelement (N, K) and microelement (Zn) fertilizers were applied on wheat by foliar spraying (FS) and root irrigation (RI) methods in a field experiment. The results indicated that fertilization methods and types can have significant impacts on the diversity and structure of rhizospheric microorganisms in wheat. The application method produced more significant effects than the fertilizer type. RI-N played a more important role in improving the wheat yield and quality and affected the changes in some nitrogen-fixing bacterial communities. Finally, eight strains of bacteria belonging to Pseudomonas azotoformans and P. cedrina showed positive effects on the growth of wheat seedlings. Overall, our study provides a better understanding of the dynamics of wheat rhizosphere microbial communities and their relation to fertilization, yield, and quality, showing that plant growth-promoting rhizobacteria with nitrogen fixing may be a potential approach for more sustainable agriculture production.


Assuntos
Microbiota , Triticum , Rizosfera , Nitrogênio/análise , Fertilizantes/análise , Fertilização , Solo/química , Microbiologia do Solo
14.
Water Environ Res ; 96(4): e11025, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634172

RESUMO

Wastewater treatment in a constructed wetland is achieved by the presence of plant species, the metabolism of microorganisms, and the enzyme activities. Three small-scale hybrid subsurface flow constructed wetlands (HSFCWs) planted with Arundo donax and one unplanted HSFCW were constructed near a water resource recovery facility at Guru Gobind Singh Indraprastha University. The purpose of the study was to determine the correlation between soil enzymatic activities and the removal of contaminants from domestic wastewater. Enzyme activity of phosphatase, protease, urease, and cellulase increased with an increase in temperature. A strong correlation between enzyme activities and TKN and surfactant removal was observed, whereas moderate correlation was observed with phosphate in planted HSFCW during the study. The correlation between COD removal and enzyme activities was low to moderate. In unplanted HSFCW, the correlation between enzyme activities and COD removal was negative, negligible to moderate to strong in the case of TKN, low to moderate in the case of phosphate, and negligible to low in the case of surfactants. The increased removal efficiency of the planted system compared with that of the unplanted system indicated a positive impact on enzyme activities with the growth of plants and their roots. PRACTITIONER POINTS: Protease, urease, and cellulase activities: Planted HSFCW exhibited higher protease, urease, and cellulase activities than unplanted, signifying enhanced breakdown. July displayed maximum enzyme activities, correlating with heightened biological breakdown in both systems. Fluctuations in enzyme activities reflected seasonal changes, influencing nutrient degradation rates. Planted HSFCW consistently showed higher enzymatic activities across protease, urease, and cellulase than unplanted.


Assuntos
Celulases , Purificação da Água , Humanos , Águas Residuárias , Áreas Alagadas , Urease , Plantas , Peptídeo Hidrolases , Fosfatos , Eliminação de Resíduos Líquidos , Nitrogênio/análise
15.
Sci Rep ; 14(1): 8114, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582951

RESUMO

The COVID-19 pandemic has been a life threatening and spreads wildly with physical human contact. Physical distancing is recommended by health experts to prevent the spread; thus, agronomic research has to be designed in conformity to this preventive standard during the pandemic. Consequently, this study was designed to evaluate the reliability of using digital tools in nutrient management research amid the COVID-19 pandemic in northern Nigeria. Fifty extension agents (EAs) were selected across 15 LGAs of Kaduna and Kano states. The EAs were trained on how to generate fertilizer recommendation using an android mobile phone-based nutrient expert (NE), to measure farmers' field sizes using UTM Area measure mobile phone app, and open data kit to record, submit and aggregate data during the exercise. Each EA covered 50 farms, where two nutrient management practices-one determined by the farmers: farmer fertilizer practice (FFP), and the other generated using the NE were evaluated. Results show that around 90% of the farmers have an average field size of 1.13 ha. All selected farmers used improved maize varieties for planting, among which 21% been able to use the exact recommended or lower seed rate. Use of inorganic fertilizer was 33% higher than the average recommended NE rate, while average yield of the NE fields was 48% higher than for the FFP. The results of this study indicate that yield can be improved with site-specific nutrient management (SSNM) extension approach. The SSNM using digital tools as the NE seem promising and befits to agronomic research in northern Nigeria amid the COVID-19 pandemic.


Assuntos
COVID-19 , Zea mays , Humanos , Pandemias , Nigéria/epidemiologia , Fertilizantes , Tecnologia Digital , Reprodutibilidade dos Testes , Nitrogênio/análise , COVID-19/epidemiologia , COVID-19/prevenção & controle , Nutrientes
16.
PLoS One ; 19(4): e0299054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574027

RESUMO

Wheat straw returning is widely practiced in agriculture; therefore, it is critical to determine the physicochemical and bacterial indicators in soil for the organic carbon storage, accumulative C mineralization, total nitrogen improvement, and nitrogen mineralization in various soil types after wheat straw returning. This study evaluated the influenced indicators of wheat straw addition on soil organic carbon and nitrogen transformation in diverse soil types. For this purpose, an incubation experiment was conducted to analyze the carbon and nitrogen transformation in soil from eight Chinese provinces treated with the same dry weight of wheat straw. The results indicated that the primary physicochemical and bacterial indicators that predict the carbon and nitrogen transformations in the acidic and alkaline soils were different. Of all the natural physicochemical properties of soil, cation exchange capacity and clay content were significantly correlated with organic carbon, mineralized carbon, total nitrogen, and mineralized nitrogen in the alkaline soil. In the acidic soil, the initial C/N ratio of soil was the most significant indicator of carbon and nitrogen transformation. From the perspective of the carbon- and nitrogen-relating bacterial communities, Proteobacteria were largely responsible for the accumulative C mineralization in both types of soil. Furthermore, Proteobacteria strongly regulated the organic carbon storage in the acidic soil after wheat straw addition, whereas Gemmatimonadetes was the main predicted indicator in the alkaline soil. Additionally, total nitrogen and mineralized nitrogen levels were largely explained by Bifidobacterium and Luteimonas in the alkaline soil and by Nitrospira and Bdellovibrio in the acidic soil. Soil physicochemical and biological properties significantly influence soil carbon and nitrogen transformation, which should be considered crucial indicators to guide the rational regulation of straw return in several areas.


Assuntos
Carbono , Solo , Solo/química , Triticum , Nitrogênio/análise , Agricultura/métodos , Bactérias , Proteobactérias , Fertilizantes
17.
Environ Geochem Health ; 46(5): 151, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578445

RESUMO

Nitrate attenuation during river bank infiltration is the key process for reducing nitrogen pollution. Temperature is considered to be an important factor affecting nitrate attenuation. However, the magnitude and mechanism of its impact have not been clear for a long time. In this study, the effects of temperature and temperature gradient on the nitrate denitrification rate were investigated via static batch and dynamic soil column simulation experiments. The results showed that temperature had a significant effect on the denitrification rate. Temperature effects were first observed in denitrifying bacteria. At low temperatures, the microorganism diversity was low, resulting in a lower denitrification rate constant. The static experimental results showed that the denitrification rate at 19 °C was approximately 2.4 times that at 10 °C. The dynamic soil column experiment established an exponential positive correlation between the nitrate denitrification decay kinetic constant and temperature. The affinity of denitrifying enzymes for nitrate in the reaction substrate was ordered as follows: decreasing temperature gradient (30 °C → 10 °C) > zero temperature gradient (10 °C) > increasing temperature gradient condition (0 °C → 10 °C). This study provides a theoretical basis for the biogeochemical processes underlying river bank infiltration, which will help aid in the development and utilization of groundwater resources.


Assuntos
Nitratos , Rios , Nitratos/análise , Temperatura , Desnitrificação , Compostos Orgânicos , Nitrogênio/análise , Solo/química
18.
J Environ Sci (China) ; 142: 129-141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527879

RESUMO

The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands (CWs). The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies. In this paper, the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V. natans plants were measured at different initial ammonium concentrations. The results demonstrated that the total chlorophyll and soluble sugar synthesis of V. natans plants decreased by 51.45% and 57.16%, respectively, and malondialdehyde content increased threefold after 8 days if the initial NH4+-N concentration was more than 5 mg/L. Algal density, bacterial quantity, dissolved oxygen, and pH increased with high ammonium shocks. The average removal efficiencies of total nitrogen and NH4+-N reached 73.26% and 83.94%, respectively. The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria, Cyanobacteria, and Bacteroidetes increased. The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification (HNAD) bacteria expanded in biofilms. In particular, HNAD bacteria of Flavobacterium, Hydrogenophaga, Acidovorax, Acinetobacter, Pseudomonas, Aeromonas, and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V. natans plants. The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway. Thus, the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.


Assuntos
Compostos de Amônio , Cianobactérias , Desnitrificação , Nitrogênio/análise , Áreas Alagadas , RNA Ribossômico 16S , Nitrificação , Biofilmes
19.
Glob Chang Biol ; 30(3): e17247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491798

RESUMO

Emerging evidence points out that the responses of soil organic carbon (SOC) to nitrogen (N) addition differ along the soil profile, highlighting the importance of synthesizing results from different soil layers. Here, using a global meta-analysis, we found that N addition significantly enhanced topsoil (0-30 cm) SOC by 3.7% (±1.4%) in forests and grasslands. In contrast, SOC in the subsoil (30-100 cm) initially increased with N addition but decreased over time. The model selection analysis revealed that experimental duration and vegetation type are among the most important predictors across a wide range of climatic, environmental, and edaphic variables. The contrasting responses of SOC to N addition indicate the importance of considering deep soil layers, particularly for long-term continuous N deposition. Finally, the lack of depth-dependent SOC responses to N addition in experimental and modeling frameworks has likely resulted in the overestimation of changes in SOC storage under enhanced N deposition.


Assuntos
Carbono , Solo , Carbono/análise , Nitrogênio/análise , Florestas , Sequestro de Carbono , China
20.
PeerJ ; 12: e17031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464755

RESUMO

Background: In a context of long-term highly intensive grazing in grassland ecosystems, a better understanding of how quickly belowground biodiversity responds to grazing is required, especially for soil microbial diversity. Methods: In this study, we conducted a grazing experiment which included the CK (no grazing with a fenced enclosure undisturbed by livestock), light and heavy grazing treatments in a desert steppe in Inner Mongolia, China. Microbial diversity and soil chemical properties (i.e., pH value, organic carbon, inorganic nitrogen (IN, NH4+-N and NO3--N), total carbon, nitrogen, phosphorus, and available phosphorus content) both in rhizosphere and non-rhizosphere soils were analyzed to explore the responses of microbial diversity to grazing intensity and the underlying mechanisms. Results: The results showed that heavy grazing only deceased bacterial diversity in the non-rhizosphere soil, but had no any significant effects on fungal diversity regardless of rhizosphere or non-rhizosphere soils. Bacterial diversity in the rhizosphere soil was higher than that of non-rhizosphere soil only in the heavy grazing treatment. Also, heavy grazing significantly increased soil pH value but deceased NH4+-N and available phosphorus in the non-rhizosphere soil. Spearman correlation analysis showed that soil pH value was significantly negatively correlated with the bacterial diversity in the non-rhizosphere soil. Combined, our results suggest that heavy grazing decreased soil bacterial diversity in the non-rhizosphere soil by increasing soil pH value, which may be due to the accumulation of dung and urine from livestock. Our results highlight that soil pH value may be the main factor driving soil microbial diversity in grazing ecosystems, and these results can provide scientific basis for grassland management and ecological restoration in arid and semi-arid area.


Assuntos
Ecossistema , Solo , Animais , Solo/química , Pradaria , Bactérias , Carbono/análise , Nitrogênio/análise , Gado , Fósforo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...